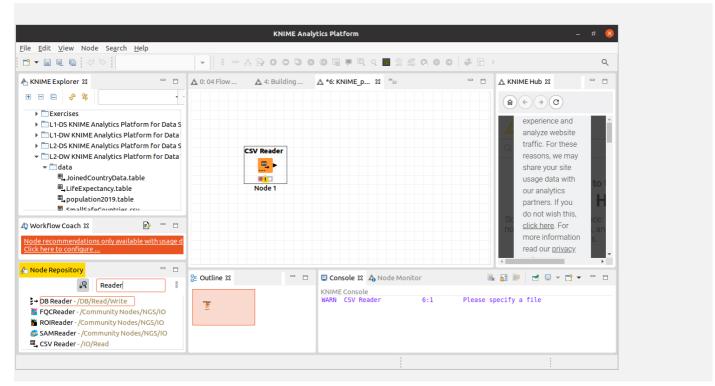


Basic building blocks of KNIME for data analytics

Introduction :


In this article we will talk about KNIME open-source software and how it can assist data scientists and data science enthusiasts to solve complex problems with little or no coding knowledge at all. In this article, we will get you started with KNIME as Data Analytics Platform. If you are new to KNIME, you can read the Introduction blog <u>here</u>. To download KNIME, you can find .

I. Data Reading:

Usually, the first thing we should do when analyzing data is reading data. In 'Node Repository', we can see all kinds of Reader nodes such as CSV

Reader node, EXCEL Reader node, Table Reader node, and so on. All we need to do is simply drag and drop the node we want into 'Workflow Editor'.

Right click the node, we can change the node's configuration; for example, we can select the path of data where we will get data from and then execute the node. If the node is executed successfully, the node will turn into Green and now we can look at the loaded data from the executed node to make sure that it has been imported properly.

II. Data Pre-processing:

1. Filtering:

Most of the time, we do not need all the information from our dataset. 'Row Filter' nodes and 'Column Filter' nodes help us select rows and columns that we want to use. This operation can be achieved by setting the configuration of the node in order to extract specific rows and columns we intend to use.

CSV Reader Colum	n Eilter
	n Filter
	[±] ↓⊧ ►
Node 1 No	ode 2

Dialog - 10:2 - Co	lumn Filter – 🗆 🙁
File	
Column Filter Flow Variables Job Manager Selec	tion Memory Policy
Manual Selection Wildcard/Reg r Exclude	ex Selection O Type Selection
Filter	T Filter
I Passengerld I Survived I Pclass I SibSp I Parch S Ticket D Fare S Cabin S Embarked	S Name S Sex D Age
Inforce exclusion	○ Enforce inclusion
ОК	Apply Cancel 🝞

2. Obtaining Description:

After selecting the columns, we may want to see the description of the data; for example, we may want to get the feel of the data by looking at basic statistics of data. (i.e. minimum value, maximum value, mean value,

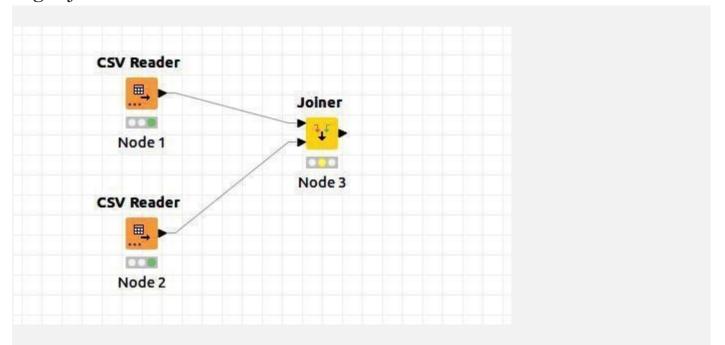
+91 7043122287	+1 408 689 1891	Ahmedabad	www.cilans.net
+91 794007058	+1 603 921 3957	New York	info@cilans.net

the standard deviation of our numeric data, and so on). All we need to do is to find the 'Data Explorer' node from the 'Node Repository' and drag it into 'Workflow Editor'. Later, we connect the current node ('node 2') with the recently imported node ('node 3') by connecting the 'Black Arrow' from tail to head between two nodes together. After that, we can now execute our new node by right-clicking on the 'node 3' and choosing 'Execute and Open views' option for executing our latest operation.

plorer	lorer		
	Conf	gure	F6
0	C Exec	te	F7
ā 🔁 🛛	Exec	te and Open Views	Shift+F10
0	Cano	d	F9
镼	E Rese		F8
.	💻 Edit	lode Description	Alt+F2
1	New	Workflow Annotation	
~	o ^D Con	ect selected nodes	Ctrl+L
20	a ^p Disc	nnect selected nodes	Ctrl+Shift+L
d	Crea	e Metanode	
N .	🔽 Crea	e Component	
Q	Q Inter	ctive View: Data Explorer View	N
₽?	₽? Com	are Nodes	
1	Show	Flow Variable Ports	
et	of Cut		

Now we can see the description of our data.

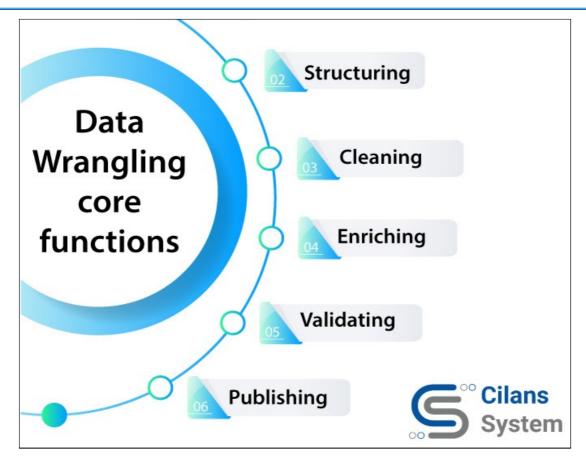
								•	
Column 11	Exclude Column	Minimum 🎝	Maximum 1	Mean 🕼	Standard Deviation ↓↑	Variance 1	Skewness 1	Kurtosis 🕼	Overall Sum ↓↑
Age	0	0.420	80	29.699	14.526	211.019	0.389	0.178	21205.170


Additionally, KNIME gives us even more information. We can even see the distribution of data in each column (Bar chart) in this step.

Column 11	Exclude Column	No. missings	Unique values 11	All nominal values	Frequency Bar Chart
Name		0	891	Young, Miss. Marie Grice, Van Impe, Mr. Jean Baptiste, Danbom, Mr. Ernst Gilbert, McEvoy, Mr. Michael, Andrews, Mr. Thomas Jr, [], Pears, Mr. Thomas Clinton, Emanuel, Miss. Virginia Ethel, Sage, Mr. George John Jr, Pavlovic, Mr. Stefo, Leitch, Miss. Jessie Wills	
Sex		0	2	male, female	

3. Combining data from multiple sources:

Sometimes, we may need to combine different datasets from various sources into one single dataset to get all necessary information we want to use. By using 'Joiner' node, we can join two datasets into one single dataset in any different joining mode such as Inner join, Left join, or Right join.



File	
Joiner Settings	Column Selection Flow Variables Job Manager Selection Memory Policy
Join Mode	Join mode Inner Join
Joining Columns	
Match all of t	the following \bigcirc Match any of the following
	Top Input ('left' table) Bottom Input ('right' table)
S Name	V S Name V +
	+
Performance Tu	ning
Performance Tu	ning Maximum number of open files: 200
Performance Tu	
Performance Tu	Maximum number of open files: 200
	Maximum number of open files: 200
	Maximum number of open files: 200
	Maximum number of open files: 200
	Maximum number of open files: 200
	Maximum number of open files: 200
	Maximum number of open files: 200

4. Removing the missing values:

Data wrangling is an important part of Data analysis. Data cleaning plays a vital role as you can see in the diagram below

'Missing Value' node helps handle missing values found in cells of the input table. For example, we can replace missing values of numeric type with the mean value of that column. Similarly, the missing value of string type can also be replaced with the most frequent value occurring in that specific column.

Dialog -	10:4 - Missing Value – 🗆 😣
File	
Default Column Settings Flow Varia	ables Job Manager Selection Memory Policy
Number (integer)	Mean
String	Most Frequent Value
Number (double)	Mean
Options marked with an aste	erisk (*) will result in non-standard PMML.
	STOR (7 will result in non-scandal u PMPIL.
OK	Apply Cancel (?)

5. Sorting / Order :

'Sorter' node helps sort the rows according to user-defined criteria. In the dialog box, we can select the columns according to which of our data should be sorted. Also, we can select how our data should be sorted in ascending or descending order.

Dialog - 10:5 - Sorter 📃 🗆 🧧
File
Job Manager SelectionMemory PolicySorting FilterAdvanced SettingsFlow Variables
Sort by D Age ■ Ascending O Descending
Next by Sex ■ Ascending Descending
Next by S Name ■ Ascending • Descending
+ Add Rule
OK Apply Cancel ?

+91 7043122287	+1 408 689 1891	Ahmedabad	www.cilans.net
+91 794007058	+1 603 921 3957	New York	info@cilans.net

S Name	S Sex	D Age	
Thomas, Master. Assad Alexander	male	0.42	
Hamalainen, Master. Viljo	male	0.67	
Baclini, Miss. Eugenie	female	0.75	
Baclini, Miss. Helene Barbara	female	0.75	
Caldwell, Master. Alden Gates	male	0.83	
Richards, Master. George Sibley	male	0.83	
Allison, Master. Hudson Trevor	male	0.92	
Johnson, Miss. Eleanor Ileen	female	1	
Nakid, Miss. Maria ("Mary")	female	1	
Becker, Master. Richard F	male	1	
Dean, Master. Bertram Vere	male	1	
Goodwin, Master. Sidney Leonard	male	1	
Mallet, Master. Andre	male	1	
Panula, Master. Eino Viljami	male	1	
Allison, Miss. Helen Loraine	female	2	
Andersson, Miss. Ellis Anna Maria	female	2	
Hirvonen, Miss. Hildur E	female	2	
Quick, Miss. Phyllis May	female	2	
Skoog, Miss. Margit Elizabeth	female	2	
Strom, Miss. Telma Matilda	female	2	
Navratil, Master. Edmond Roger	male	2	
Palsson, Master. Gosta Leonard	male	2	
Panula, Master. Urho Abraham	male	2	

III. Model Selection and Data Analysis:

In KNIME, there are many analytic methods. In this example, we apply a Machine Learning algorithm called Random Forest to perform our analysis. We can just drag the 'Random Forest Learner' node from 'Node Repository' and drop it into our 'Workflow Editor'. Furthermore, we can set the configuration of our model node such as the number of Trees. We can now execute and train our model. After that if we want to make a prediction, we just drag the 'Random Forest Predictor' node from 'Node Repository' into the 'Workflow Editor' and execute. We can now see the prediction results.

Dialog - 10:	7 - Random Forest Learner	- 0	8
File			
Options Flow Variables Job Manager Select	ion Memory Policy		
Target Column	S Survived	•	
Attribute Selection			
○ Use fingerprint attribute	🔤 <no fingerprint="" input="" valid=""></no>		
Ise column attributes			
	on 🔾 Wildcard/Regex Selection		
Exclude Filter S Name Ticket Cabin Embarked Embarked Misc Options	Include Filter I Passengerid I Pclass S Sex D Age I SibSp I Parch D Fare C Enforce inclusion		=
Enable Hilighting (#patterns to store)		2,000	*
Save target distribution in tree nodes (memory)	ry expensive - only important for tree view and PMML	export)
Tree Options			
Split Criterion	Information Gain Ratio	•	
	OK Apply Cancel (?		

Dialog - 10:10 - Random Forest Predictor 🛛 – 🗆 😣					
File					
Job Manager Selection Memory Policy Prediction Settings Flow Variables					
Change prediction column name					
Prediction column name Prediction (Survived)					
Append overall prediction confidence					
Append individual class probabilities					
Suffix for probability columns					
Use soft voting					
OK Apply Cancel 🕜					

IV. Data Visualization:

In KNIME, there are many different kinds of plot nodes. For example, we can combine the 'Color Manager' node and 'Scatter Plot' node to customize colors and draw a scatter plot to show the distribution of age. We can select colors and choose which column will be on the x-axis and which column will be on the y-axis in the configuration dialog box.

Dialog - 10:11 - Color Manager — 🗆 😣				
File				
Color Settings Flow Variables Job Manager Selection Memory Policy				
Select one Column				
S Sex				
Nominal	🔿 Range			
female male				
male				
	Preview			
Palettes Swatches HSV HSL RGB CMYK	Alpha			
• Set 1				
0.0-10				
⊖ Set 2				
Set 3 (colorblind safe)				
Set 3 (colorbind sa				
⊖ Custom				
ОК	Apply Cancel 🕐			

Dialog - 10:12 - Scatter Plot – 🗆 🙁				
File				
Job Manager SelectionMemory PolicyGeneral Plot OptionsView ControlsFlow VariablesOptionsAxis Configuration				
Create image at outport				
Maximum number of rows: 2,500				
Selection column name: Selected (Scatter Plot)				
Choose column for x axis D Age				
Choose column for y axis S Sex				
✓ Report on missing values				
OK Apply Cancel 🕐				
Scatter Plot – 🗆 🔇				
female -2 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78				
Age female = male				
Reset Apply A Close A				

V. Conclusion

KNIME is a powerful platform which is easy to learn and use. When talking about the life cycle of Data Science, we are talking about data collection, data cleaning, data integration, analysis/modeling and

+91 7043122287	+1 408 689 1891	Ahmedabad	www.cilans.net
+91 794007058	+1 603 921 3957	New York	info@cilans.net

visualization. KNIME users can easily complete all of these steps in this single platform. Furthermore, as we have seen, anyone without coding background can also work on Data analysis problems. It makes data analysis available for everyone, especially for the person who needs to analyze data only occasionally. We believe that the innovation of KNIME is beneficial to the overall Data Science community as it helps facility and introduce a powerful Analytics platform to newcomers and non-programmers.

Just try this out, and ping us if you have any queries:

Contact us on Linkedin or info@cilans.net

We will be posting more articles on Knime and Data Science in future. Check out <u>here</u>, for future blogs.

Contact: <u>Team Cilans</u>